General Guidelines for Crash Analysis in LS-DYNA

Suri Bala Jim Day

© Copyright Livermore Software Technology Corporation

• Element Shapes

- Avoid use of triangular shells, tetrahedrons, pentahedrons whenever possible (ok in rigid bodies).
- ESORT=1 if triangular shells are present,*CONTROL_SHELL.
- ESORT=1 if tetrahedrons, pentahedrons are present,*CONTROL_SOLID.

Warping Stiffness in Shells

• Warped shells are too soft.

- For warped B-T shells, set BWC=1 and invoke the more costly full projection for warping stiffness (PROJ=1) since drill projection inhibits rigid body rotation.
- For fully-integrated shell ELFORM=16, set hourglass formulation IHG to 8 to invoke warping stiffness.

• Shells

- Invoke invarient node numbering (*CONTROL_ACCURACY) so that results are insensitive to the order of the nodes in the element connectivity.
- Shell thickness update (ISTUPD in *CONTROL_SHELL) is generally not need for crash analysis (req'd for metal forming).
- Use minimum of 3 integration points through the thickness (NIP) for shell parts undergoing plastic deformation.
- Set shear factor in *SECTION_SHELL to theoretical value of 5/6.
- Turn on bulk viscosity for shells via *CONTROL_BULK_VISCOSITY

Solids

 Use ELFORM=1 for solids and include appropriate hourglass control

Invariant Node Numbering

invariant node numbering invoked

Hourglass Control

- If using *CONTROL_HOURGLASS, define part-specific *HOURGLASS cards to overwrite the global hourglass definitions where appropriate.
 - Be careful when importing validated barrier/head models
- Recommend stiffness hourglass control, IHQ=4, with hourglass coefficient QM = 0.03 for metal and plastic parts.
- Recommend viscosity-based hourglass control for foams and rubbers (IHG=2 or 3) or hourglass formulation 6
 - In soft materials, stiffness-based hourglass control (IHG=4 or 5) causes overly stiff response even with a reduced hourglass coefficient.

• Materials

- When including strain rate effects in plasticity models, set VP=1.
 - Uses plastic strain rate rather than total strain rate.
 - Results in smoother response
- Stress-strain curves should be smooth, especially for foams.
- Mass of null shells and null beams is included in total mass.
 - Unless additional mass is intentional, set density of null shells and beams to a small value.
- Curves defining constitutive data should have abscissa values in the anticipated working range. Curves will be extrapolated by LS-DYNA if necessary.

Connections

- Nodal rigid bodies
 - Avoid 1-noded RB's and nodal rigid bodies with numerically insignificant inertia as these rigid bodies are deleted and a warning is issued to the D3HSP file.
- Joints
 - Joint node pairs should be a reasonable distance apart.
 - When increasing joint penalty factor to take out 'slop' in penalty-based joint, the time step scale factor may need to be reduced to avoid instability.

Connections

- Discrete springs
 - Spring nodes cannot be massless.
 - If NON_LINEAR spring material is used, define stiffness in compression and tension.
 - Use only N1 to N2 orientation.
- Deformable spotwelds
 - Avoid "free/suspended" spotwelds.
 - Look out for spotweld nodes that are not tied (see warnings in d3hsp).
 - Exclude spotwelds from contact (automatic if MAT_SPOTWELD is used)
 - Invoke stiffness damping in shells if using *CONTACT_SPOTWELD_TORSION
 - Solid spotwelds show promise.
 - Pro: Less sensitive to spotweld placement
 - Con: No automatic spotweld generation

• Rigid Bodies

- Refined mesh of rigid bodies encouraged.
 - Added expense is minimal.
 - More realistic mass properties and distribution of contact forces.
- Specify reasonable elastic constants for *MAT_RIGID, e.g., those of steel.
 - Affects contact stiffness unless SOFT=2.
- Do not impose constraints on nodes of rigid bodies. Impose constraints on card 2 of *MAT_RIGID.

Inertia Considerations: Example

Cubes with Applied Moments Time = 0

shells solids

MMI: Mass Moment of Inertia units: mm, kg, ms

Number of elements		Element	LS-DYNA calculated		Actual MMI	% Error
shells	solids	iengui	shells	solids	(solid)	Solids
6	1	25	38.38	38.38	12.79	200%
24	8	12.5	25.59	19.19	12.79	50%
96	64	6.25	22.39	14.39	12.79	12.5%
384	512	3.125	21.59	13.19	12.79	3.1%
1536	4096	1.5625	21.39	12.89	12.79	0.8%

Initial Velocity

- Be careful with rigid body initial velocities.
 - *PART_INERTIA supercedes all other initial velocity commands.
 - If initial velocity of rigid bodies is inexplicably off, use double precision or use *INITIAL_VELOCITY_RIGID command.
- Make final check of initial velocity with a plot of velocity vectors at time = 0.

Modeling Guidelines for Crash Analysis

Contact

- Take care to account for shell thickness when generating the mesh.
- Avoid redundant contact definitions.
- Use only AUTOMATIC contacts.
- Premature nodal release from contact may lead to inconsistent answers. Increase contact thickness for very thin shells
- Use of IGNORE=1 is encouraged for contact in cases where small initial penetrations are reported.
- Use of SOFT=1 is preferred over SOFT=0, especially in treating contact between dissimilar materials.
- Use SOFT=2 for contact surfaces with sharp corners.
- Use AUTOMATIC_GENERAL for beam-to-beam contact.

Segment-Based Contact (SOFT=2)

Postprocessing

- Animate results to check for nonphysical behavior, for example, parts noticeably penetrating other parts.
- Check energies in **GLSTAT** and **MATSUM**
 - Use *CONTROL_ENERGY to turn on computation of relevant energy values.
 - Energy ratio should remain close to 1.0.
 - Hourglass energy < 10% of peak internal energy.
 - If no contact friction, contact energy in GLSTAT should be relatively small.
 - If contact friction is nonzero, contact energy should be positive and not necessarily small.
- System added mass should be < 1% of physical mass (check GLSTAT)

Automotive Crash guidelines are a good start.

Differences in Automotive Crash and Aerospace Impact?

- Impact velocities and thus strain rates are higher in Aerospace applications.
 - Material strain rate effects
 - Material damage/failure/erosion
- Aerospace materials are generally lighter, stiffer, more complex.

• • • •

Additional guidelines for Aerospace impact

- Time Step
 - Reduce time step scale factor to 0.6 or 0.7.
- Hourglass Control
 - Look at viscous-based hourglass control as first alternative.
 - Use type 1 hourglass control with hourglass coefficient=1.E-3 for fluids.
- Bulk Viscosity
 - Increase bulk viscosity coefficients by a factor of 10 for bird material.

Additional guidelines for Aerospace impact

- Contact
 - When elements are eroded, use *CONTACT_ERODING with SOFT=1.
 - Eroding_nodes_to_surface for Lagrangian bird strike.
 - Eroding _single_surface otherwise
 - Retain mass of eroded elements via ENMASS in *CONTROL_CONTACT
- Materials
 - Include strain rate effects if data is available.
 - For sandwich composites, invoke laminate shell theory (LAMSHT in *CONTROL_SHELL).
- ...

Effect of Deleted Nodes on Contact

