Deformable Spotwelds in LS-DYNA for Impact and NVH Applications

Suri Bala

Livermore Software Tech. Corp.

Outline

- Spotwelding Overview
- Rigid Spotwelds
- Deformable Spotweld Elements and Materials
- Spotwelds Connections using Contact Interface
- Spotweld Failure
- General Guidelines

Spotwelding Overview

Spotwelding

Introduction

- One of the oldest welding processes in existence for more than a century
- Used wide range of industries primarily to connect steel sheet bodies
- As the name suggests, it is used to 'weld' parts at a pre-defined 'spot'
- Belongs to a category of 'Resistance' welding

Spotwelding - Process

- > Weld is created using current and force as the primary source
- Current flowing through the metal causes the metal to 'resist' which generates heat
- Heat generated causes the metal to 'fuse' together

Spotwelding - Quality

- Several factors influence the quality of the weld
 - Sheet metal thickness
 - Parts too thin will result in no weld
 - Minimum thickness , 0.5-0.6 mm
 - Parts too thick will result in a weak weld
 - □ Maximum thickness, 3.0 to 4.0 mm
 - Electrode Force, Weld Current
 - Electrode Diameter
 - Generally the diameter is greater than the desired weld nugget

 $^{5\}sqrt{\min_sheeet_metal_thickness}$

Spotweld Diameter, Sheet Thickness

Rigid Spotwelds

Rigid Spotwelds Representation

- In earlier methods, the spotweld was conveniently considered to be a rigid connection between the metal sheets
- Numerically, the connection was represented using rigid-body mechanics
 - Weld Mass = mass of the connecting weld nodes
 - Translation and Rotation degrees of freedom were coupled
 - Weld forces, accelerations were recorded

Rigid Spotwelds – Misc Notes

> Weld line must be close to normal to the sheet metal surface

- Weld elements do not control time step
- Failure could be be modeled
 - Brittle
 - □ Time based, Normal Force and Shear Force
 - Ductile
 - Plastic Strain

Rigid Spotweld - Disadvantages

Sheet metal mesh must have a matching node at weld projection point

- Increased pre-processing effort and time
- Affected mesh orthogonality
- Weld deformation neglected
- Usually promoted hourglassing if sheet metal elements used reduced integration

Deformable Spotweld Elements

Deformable Spotweld Beam Element (1)

- In 960, LS-DYNA introduced a beam element that could be used for representing spotwelds
 - Circular cross-section using *SECTION_BEAM
 - **ELFORM** = 9
 - **CST** = 1, circular
 - □ Outer Diameter at N1 and N2, **TS1 = TS2**, Weld nugget diameter
 - Inner Diameter at N1 and N2, TT1 = TT2 = zero

Deformable Spotweld Beam Element (2)

- Some notes of this element
 - Incrementally objective rigid body rotations do not generate strains
 - Reference axis is between N1 and N2
 - Element variables are integrated
 - mid-point of the reference axis
 - multiple points on the cross-sectional area
 - Poisson's effect is ignored
 - Refer theory manual for more information
- Transmitting beam torsional forces requires special treatment
 - Shell has no stiffness about the drilling degree of freedom
 - Treatment should generate in-plane forces

Deformable Spotweld Solid Element (1)

▶ In 970, the spotwelds can be modeled using 8-noded brick element

> No special treatment to transmit torsional forces

Deformable Spotwelds – Solid Element (2)

Depending on the sheet metal thickness, the solid element dimensions could be the following

Weld length	Aspect Ratio (Longest Length/Smallest Length)
0.5	10
1	5
2	2.5
3	1.6

- Using a selectively reduced integrated element (elform=2) for bad aspect ratios may result in shear locking and yield excessive stiff behavior
- The recommended element formulation is the under integrated element (elform=1) with appropriate hourglass stabilization method

Deformable Spotwelds – Solid Element (3)

- In LS-DYNA, there are three different types of hourglass stabilization
 - X Viscous Hourglass types 1,2,3
 - Based on nodal velocities
 - □ Fails under low-velocities and is more suited for explosive type applications
 - X Stiffness Hourglass type 4,5
 - Based on element material stiffness
 - Uses QM as a scale factor
 - Results dependent on the user's experience
 - ✓ Assumed strain field Hourglass type 6
 - It is based on the element geometry and material stiffness
 - With QM=1.0, the elastic beam under pure bending is predicted accurately for very coarse mesh
 - Recommended for spotweld elements
 - Refer paper by Dr. Lee Bindeman

Deformable Elements – Material

- A new material model, MAT_SPOTWELD, was implemented starting v960 to support the constitutive representation of the spotweld material
- The material model is essentially a isotropic bi-linear elastic plastic model with isotropic hardening that includes additional parameters for spotwelds

Deformable Spotwelds - Timestep

- Unlike earlier approaches that used rigid elements, the beam and solid elements control the global solution timestep (explicit analysis only)
- Beam Element

$$\Delta t_c = \frac{L}{c}$$
> Solid Element

$$\Delta t_c = \frac{L_e}{\left\{ \left[Q + \left(Q^2 + c^2 \right)^{\frac{1}{2}} \right] \right\}}$$

Q = function of bulk viscosity

$$c = \sqrt{\frac{E}{\rho}}$$

$$L_e = \frac{v_e}{A_{e\max}}$$

$$c = \sqrt{\frac{E(1-v)}{(1+v)(1-2v)\rho}}$$

Deformable Spotwelds – Time-Step Scaling

- For explicit analyses, which is conditionally stable, the solution time-step is governed by a single controlling element which has the smallest time-step
- There are two different methods of enforcing a user-defined tidstep
 - Increase the density of the controlling element so as to increase its timestep
 - Decrease the elastic modulus

Deformable Spotwelds – Mass-scaling (1)

- For a minimum sheet metal thickness of 0.5 mm, the beam length, with no offsets is equal to 0.5 mm
- Using generic steel property and ignoring Poisson's ratio, the sound wave speed and resulting time-step are

$$c = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{210000MPa}{7.89e - 9Megagram / mm^3}} = 5159066 mm / sec$$

$$\Delta t = \frac{L}{c} = \frac{0.5}{5159.067} = 9.69168e - 08 \sec{onds} \approx 0.01 \text{ micro sec onds}$$

Its nearly 100 times lower than we would like it to be which is 1 microsecond

Deformable Spotwelds – Mass-scaling - DT

- Besides a global parameter, DT2MS in *CONSTROL_TIMESTEP, to force a constant solution timestep for explicit analysis, we have a local parameter, DT, in *MAT_SPOTWELD that applies only for spotweld elements
 - If DT = 0, abs(DT2MS*TSSFAC) will be used to scale the spotweld mass
 - If DT > 0, DT will be used to scale the spotweld mass
- It is best to set DT=0 if non-zero DT2MS is used
 - LS-DYNA would still report added-mass information for deformable spotwelds

Deformable Spotwelds – Stiffness scaling

- As mentioned previously, the material stiffness of the spotwelds can be decreased to increase the time-step
- To achieve a timestep of 1microsecond for a 0.5mm length weld, the elastic modulus is:

$$E = \frac{L^2 \rho}{\Delta t^2} = \frac{0.5^2 \times 7.89e - 9}{1.0e - 6^2} = 1972 MPa \approx \frac{1}{100} \text{ original } \mod ulus$$

Spotwelds Contacts

Introduction

- LS-DYNA offers several tied contact to 'glue' structures
- It is widely used when arbitrary meshes or incompatible elements are to be merged
- ➢ How does it works ?
 - A constraint based relationship is established between the 'slave' and 'master'
 - As compared with other regular pentalty based contacts, no sliding is allowed with this method

Tied Contact Types

- In LS-DYNA, tied contacts can be broadly classified into following categories
 - Couples only translational degrees of freedom
 - Couples both translational and rotational degrees of freedom
 - Support of Offsets between interfaces

Spotweld Contact

- Unlike several other codes which requires to specify the spotweld to segment constraint explicitly, LS-DYNA offers a contact interface to establish the constraints internally
- *CONTACT_TIED_SHELL_EDGE_TO_SURAFCE or *CONTACT_SPOTWELD (v960 and later) is recommended for tying spotwelds
 - Couples both translational and rotational degrees of freedom
 - Spotwelds defined as slave
 - Segments defined as master

Contact Spotweld Process Overview (1)

- The tying method is divided into
 - Initialization
 - assemble all slave and master information
 - Segment Determination
 - For every slave node find the closest master segment and establish the contact point

Contact Spotweld - Shape Functions

- Tying method contd.
 - Establish constraints based on shape functions

Contact Spotweld - Constraints

- > Tying method contd.
 - Using the shape functions, we can relate the incremental master nodal force and mass using the following equations

$$\Delta f_m^i = \sum_{i=1}^4 N_i(\xi, \eta) * f_s$$
$$\Delta m_m^i = \sum_{i=1}^4 N_i(\xi, \eta) * m_s$$

 Similary, the forces on the slave node can be computed as the weighted average of the master segment nodes

$$f_s = \sum_{j=i}^4 N(\xi, \eta) f_i^j$$
$$a_{i_s} = \sum_{j=i}^4 N(\xi, \eta) a_i^j$$

Contact Spotweld – Contact Point at Center

- ➢ For a contact point of 0,0:
 - N1=N2=N3=N4=0.25
 - Every master node will get 1/4th of the slave nodal force and mass
 - Larger the area, the ratio is still the same

Contact Process – Contact Point at Node

- ➢ For a contact point of 1,1:
 - N3=1.0, N1=N2=N4=0.0
 - Only node 3 will get the full slave nodal force and mass while nodes 1,2 and 4 will be zero

Mesh considerations

- It is imperative that the ideal method to connect the spotweld is
 - meshing the sheet metal to have an element length that is equal to the weld diameter
 - Additionally, to equally distribute the forces to the sheet metal nodes, the weld point should be projected at the center
- However, for relatively small sized mesh the above requirement is not mandatory
- As the sheet metal mesh size increases it is best that the weld point is close to atleast one of the mesh nodes
 - Automatic mesh coarsening

Few Projection Examples

Case	Description	Graphical Representation	Remarks
CASE 1	Beam at Element Centroid	n1 n2	 n1 and n2 Projected to Master Segment M and M2 Respectively Same Forces On All Four Master Segment Nodes
CASE 2	Beam at Element Edge	n1 n2	 n1 and n2 Projected to Master Segment Edge Nodes Master Segment Edge Nodal Force Dependent On Slave Node Location
CASE 3	Beam at Element Corner Node	n1 n2	Force Equal to Master Segment Corner Node
CASE 4	Beam at Element Centroid Contact Penetration Exists	n1 n2	 Penetration First Eliminated Projection of Spotweld Nodes Warning Message Printed Indicating Distance Moved
CASE 5	Spotweld Beam In Space (But in Plane of Master Segment)	n2	 N1 not Projected Warning Message Printed

Few Projection Examples (contd.)

CASE 6	Spotweld Beam In Space (But in Plane of Master Segment) Presence of Another 'Closest' Segment	M3 n1 n2	 N1 Projected Master Segment M3 Warning Message Printed Indicating Distance Moved
CASE 7	Beam at Element Centroid	n1	 Nodes Not Projected Warning Message Printed Indication
	Contact Penetration Exists (S2S)	n2	Exessive Distortion of Beam
CASE 8	Contact Penetration Exists (S2S)	n1	 Nodes Not Projected Warning Message Printed Indication
	Normals Oriented Outwards	n2	Exessive Distortion of Beam

Contact Limitations (1)

When searching for the closest segment, a tolerance is used to determine the criteria for tying

 $\delta_{1} = 0.6*(slave_thickness + master_thickness)$ $\delta_{2} = 0.05*\min(master_segment_diagonal)$ Final_Tolerance, $\delta = \max(\delta_{1}, \delta_{2})$

 However, in some instances, the tolerance can be very small so LS-DYNA uses –SST and –MST as variables to overwrite the default tolerances

Contact Limitations (2)

- Since the contact is a constraint based:
 - Multiple slave nodes may be constrained to a single master segment
 - However, the master segment must not belong to any constraints
 - CONSTRAINED_
 - *MAT_RIGID
 - As an alternative, if the master segment in rigid, the slave spotweld node may be defined as an extra node

Example

Deformed – Side View

Deformed – Top View

Spotweld Length

Time

Spotweld Force

Time

Spotweld Failure

Introduction

- Several tests indicate that the spotweld or the metal attached to it often fail under extreme loads
- Though the importance to include spotweld failure is understood, a suitable failure theory is difficult to develop without extensive testing
 - DCX is involved with R&D for a large matrix of tests to develop appropriate failure theories
- In LS-DYNA, based on earlier work there are two main failure theories
 - Time based
 - Plastic Strain
 - Resultant Based
 - Peak Axial Stress based on simple beam theory

Time Based Failure

- TFAIL in *MAT_SPOTWELD
 - EQ. 0 ignored
 - GT. 0 removes the element from calculation at TFAIL
- Handy when test data exists about weld failure in the model but no other failure criteria exists
- Brittle Failure

Plastic Strain Based

- EFAIL in *MAT_SPOTWELD
 - EQ. 0 ignored
 - GT. 0 failure plastic strain
- Every integration point is checked for this criteria and they fail independently
 - Applies only for beams
 - Entire element is deleted for 8-noded 1-point integration element

Force/Moments Resultants Based

 Spotwelds fail when the resultant variables are outside the failure surface defined by,

$$\left(\frac{|N_{rr}|}{N_{rrF}}\right)^2 + \left(\frac{|N_{rs}|}{N_{rsF}}\right)^2 + \left(\frac{|N_{rt}|}{N_{rtF}}\right)^2 + \left(\frac{|M_{rr}|}{M_{rrF}}\right)^2 \left(\frac{|M_{ss}|}{M_{ssF}}\right)^2 + \left(\frac{|T_{tt}|}{T_{ttF}}\right)^2 - 1 = 1$$

Considering only Axial Forces:

$$\left|N_{rr}\right| = N_{rrF}$$

Toyota developed a failure criteria based on simple beam theory

$$\left(\frac{\sigma_{rr}}{\sigma_{rrF}}\right)^2 + \left(\frac{\tau_{rr}}{\tau_{rrF}}\right)^2 - 1 = 0$$

Strain-rate independent

$$\left(\frac{\sigma_{rr}}{\sigma_{rrF}\left(\dot{\varepsilon}_{ff}\right)}\right)^{2} + \left(\frac{\tau_{rr}}{\tau_{rrF}\left(\dot{\varepsilon}_{ff}\right)}\right)^{2} - 1 = 0$$

Strain-rate dependent

 $\sigma_{rr} = longitudinal_stress = axial_stress + stress(moments, shear_stress)$

$$\sigma_{rr} = \frac{N_{rr}}{A} + \frac{\sqrt{M^2_{rs} + M^2_{rt}}}{Z} * \tau$$

$$A = \frac{\pi * d^2}{4}$$

$$Z = \sec tion_mod ulus = \frac{I}{y} = \frac{\pi * d^3}{32}$$

 $d = weld _nugget _diameter OR \sqrt{\frac{Area_of_Brick}{\pi}}$

Damage Evolution

Starting 970, a linear damage evolution parameter is available

Some notes on spotweld failure

- Spotweld beams seems sensitive to the location of the spotwelded element
- If failure is to be modeled, brick spotwelds are recommended
 - Possible 4 bricks per weld
- ➢ NF > 0
 - Number of force vectors for filtering
- Local reference system

General Guidelines – Pre-processing

Preprocessing Guidelines (1)

- Account for sheet metal thickness and weld nugget diameter relationship
- Flanges must be at least 3 elements per side

Preprocessing Guidelines (2)

- Account for all untied spotwelds
 - Special parameters in *CONTROL_CONTACT
 - OUTSEG
 - List of slave nodes and its corresponding master segment
 - □ SPOTSTP
 - Terminate if a master segment could not be located
 - SPOTDEL
 - If the master segment fails, delete the attached spotweld element
- Use of one single *CONTACT_SPOTWELD contact is recommended
 - Include ALL spotweld PIDs as one slave set
 - Include ALL master PIDs as one master set
- Exclude all spotweld elements from any global sliding contact definitions

Post-Processing Guidelines

Post-processing Guidelines (1)

- If enough care is taken during preprocessing, spotwelds postprocessing is maintenance free
- Request for SWFORC which includes
 - Axial Forces
 - Spotweld Length
 - Shear Force
 - Resultant Force
 - Failure
- Ensure proper mass-scaling was employed
 - Projection of the spotweld node may distort the element

Questions and Answers