*ML_LEARN_RFC¶
Description: Random Forest Classifier
Syntax:
ml_learn_rfc(dataset,independents,clabel,cv,train_ratio,normalize,autoclean)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
5 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
6 | Normalize | select | none | Normalizes each numerical column. |
7 | Auto Clean | select | no | Clean a dataset using preset rules. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_DTREE¶
Description: Decision Tree Classifier
Syntax:
ml_learn_dtree(dataset,independents,clabel,criterion,cv,train_ratio,normalize,autoclean)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Criterion | select | gini | The method used to measure the quality of the splits in a tree. |
5 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
6 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
7 | Normalize | select | none | Normalizes each numerical column. |
8 | Auto Clean | select | no | Clean a dataset using preset rules. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_ELASTICNET¶
Description: ElasticNet Regression
Syntax:
ml_learn_elasticnet(dataset,independents,clabel,normalize,autoclean,grid_response,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
8 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
9 | Use Target Dependency | select | no | Useful for time-history predictions |
10 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
11 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_BAYESIANRIDGE¶
Description: BayesianRidge Regression
Syntax:
ml_learn_bayesianridge(dataset,independents,clabel,normalize,autoclean,grid_response,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
8 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
9 | Use Target Dependency | select | no | Useful for time-history predictions |
10 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
11 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_BAYESIANRIDGECV¶
Description: BayesianRidge Regression with CV
Syntax:
ml_learn_bayesianridgecv(dataset,independents,clabel,normalize,autoclean,grid_response,cv,train_ratio,dependent_targets,num_dig)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
8 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
9 | Use Target Dependency | select | no | Useful for time-history predictions |
10 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_DECISION_TREE_TRAIN¶
Description: Train or classify using Decision Tree
Syntax:
ml_decision_tree_train(database_id,train_column,drop_columns)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Database | text | ||
2 | Column Name | file | ||
3 | Drop Columns | scalar |
ID | Name | Type | Remarks |
---|---|---|---|
1 | text |
*ML_LEARN_LOGISTIC¶
Description: Logistic Regression
Syntax:
ml_learn_logistic(dataset,independents,clabel,normalize,autoclean,grid_response,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
8 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
9 | Use Target Dependency | select | no | Useful for time-history predictions |
10 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
11 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_SGDR¶
Description: SGD Regression
Syntax:
ml_learn_sgdr(dataset,independents,clabel,degree,normalize,grid_response,autoclean,cv,train_ratio,optimize,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Degree | select | none | Order of fit. |
5 | Normalize | select | none | Normalizes each numerical column. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Auto Clean | select | no | Clean a dataset using preset rules. |
8 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
9 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
10 | Optimize | select | Obtain the input points and resulting Optimum. | |
11 | Use Target Dependency | select | no | Useful for time-history predictions |
12 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
13 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_LASSO¶
Description: Lasso Regression
Syntax:
ml_learn_lasso(dataset,independents,clabel,degree,normalize,grid_response,autoclean,run_grid_search,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Degree | select | none | Order of fit. |
5 | Normalize | select | none | Normalizes each numerical column. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Auto Clean | select | no | Clean a dataset using preset rules. |
8 | Run Grid Search | select | no | Runs grid search to find the best hyperparameters |
9 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
10 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
11 | Use Target Dependency | select | no | Useful for time-history predictions |
12 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
13 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_RIDGE¶
Description: Ridge Regression
Syntax:
ml_learn_ridge(dataset,independents,clabel,normalize,grid_response,autoclean,degree,run_grid_search,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
7 | Degree | select | none | Order of fit. |
8 | Run Grid Search | select | no | Runs grid search to find the best hyperparameters |
9 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
10 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
11 | Use Target Dependency | select | no | Useful for time-history predictions |
12 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
13 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_DTREEREG¶
Description: Decision Tree Regression
Syntax:
ml_learn_dtreereg(dataset,independents,clabel,normalize,grid_response,autoclean,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
7 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
8 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
9 | Use Target Dependency | select | no | Useful for time-history predictions |
10 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
11 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_GPR¶
Description: Gaussian Process Regression
Syntax:
ml_learn_gpr(dataset,independents,clabel,normalize,grid_response,autoclean,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
7 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
8 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
9 | Use Target Dependency | select | no | Useful for time-history predictions |
10 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
11 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_GBOOSTR¶
Description: Gradient Boost Regressor
Syntax:
ml_learn_gboostr(dataset,independents,clabel,normalize,grid_response,autoclean,run_grid_search,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
7 | Run Grid Search | select | no | Runs grid search to find the best hyperparameters |
8 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
9 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
10 | Use Target Dependency | select | no | Useful for time-history predictions |
11 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
12 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_RFR¶
Description: Random Forest Regression
Syntax:
ml_learn_rfr(dataset,independents,clabel,normalize,grid_response,autoclean,run_grid_search,cv,train_ratio,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
7 | Run Grid Search | select | no | Runs grid search to find the best hyperparameters |
8 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
9 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
10 | Use Target Dependency | select | no | Useful for time-history predictions |
11 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
12 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_SVR¶
Description: Support Vector Regression
Syntax:
ml_learn_svr(dataset,independents,clabel,normalize,grid_response,autoclean,cv,train_ratio,dependent_targets,num_dig)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
7 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
8 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
9 | Use Target Dependency | select | no | Useful for time-history predictions |
10 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_MLP¶
Description: MLP Regression
Syntax:
ml_learn_mlp(dataset,independents,clabel,normalize,grid_response,autoclean,run_grid_search,cv,train_ratio,dependent_targets,mlp_hidden_layer_sizes,mlp_max_iter,mlp_alpha,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
7 | Run Grid Search | select | no | Runs grid search to find the best hyperparameters |
8 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
9 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
10 | Use Target Dependency | select | no | Useful for time-history predictions |
11 | MLP Hidden Layer Sizes (csv) | text | MLP Hidden layers separarted by commas. Each delimited values represents a layer between the Input and the Output layers | |
12 | MLP Maximum Number of Iterations | text | MLP Hidden layers separarted by commas. Each delimited values represents a layer between the Input and the Output layers | |
13 | MLP Strength of the L2 regularization term | text | Strength of the L2 Regularization term | |
14 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
15 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_MLP_CLASSIFY¶
Description: MLP-Classifier
Syntax:
ml_learn_mlp_classify(dataset,independents,clabel,train_ratio,normalize,autoclean)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
5 | Normalize | select | none | Normalizes each numerical column. |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_GNB¶
Description: Gaussian Naive Bayes
Syntax:
ml_learn_gnb(dataset,independents,clabel,normalize,train_ratio,autoclean)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
6 | Auto Clean | select | no | Clean a dataset using preset rules. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_PREDICT_INTERACTIVE¶
Description: ML Predict Info
Syntax:
ml_predict_interactive(mfile,inputs,targets,schema,dataset,reference_dataset,raw_column_name)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Model File | text | Trained model file | |
2 | Inputs | scalar | This can come from a ML_PREDICT_INFO worker that were used while learning | |
3 | Targets | scalar | This can come from a ML_PREDICT_INFO worker that were used while learning | |
4 | Schema | dataset | This can come from a ML_PREDICT_INFO worker that were used while learning <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#datasetinput’> <i class=’fa fa-external-link’> </i> View more </a> | |
5 | Inputs For Prediction | predict_interactive | If the inputs, targets and schema are specified, a slider will be presented for selection | |
6 | Reference Dataset | dataset | This dataset contains the points that will be original dataset with curves <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#datasetinput’> <i class=’fa fa-external-link’> </i> View more </a> | |
7 | Raw Column Name | scalar | If the prediction is for curve points, you can choose the Curve Column name during training |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Predictions | dataset |
*ML_PREDICT_INFO¶
Description: ML Interactive Prediction
Syntax:
ml_predict_info(mfile)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Saved Model File | text | Path of the model file from a previous training worker |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Model File | text | |
2 | Lucy JSON | json | |
3 | Independents | scalar | |
4 | Targets | scalar | |
5 | Schema | dataset | |
6 | Config Parameters | keyvalue |
*ML_PREDICT¶
Description: ML Predict
Syntax:
ml_predict(dataset,mfile,reference_dataset,raw_curve_column)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Prediction Dataset | dataset | Input Dataset for Prediction <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#datasetinput’> <i class=’fa fa-external-link’> </i> View more </a> | |
2 | Saved Model File | text | ||
3 | Learn Dataset | dataset | Useful for curve predictions <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#datasetinput’> <i class=’fa fa-external-link’> </i> View more </a> | |
4 | Raw Curve Column Name | text | Useful for curve predictions so we can use the x-values of this curve to build the Predicted curve |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Predictions | dataset |
*ML_LEARN_SVC¶
Description: Support Vector Classifier
Syntax:
ml_learn_svc(dataset,independents,clabel,cv,train_ratio,normalize,autoclean)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
5 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
6 | Normalize | select | none | Normalizes each numerical column. |
7 | Auto Clean | select | no | Clean a dataset using preset rules. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_AUTO¶
Description: Auto Regression
Syntax:
ml_learn_auto(dataset,independents,clabel,regression_types,normalize,grid_response,autoclean,cv,train_ratio,run_grid_search,dependent_targets,num_dig,skip_trainingdata_in_model,gs_scoring_type,cv_scoring_type,ref_dataset,ref_ratio)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Regression Type | select | Array | Available regression methods |
5 | Normalize | select | none | Normalizes each numerical column. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Auto Clean | select | no | Clean a dataset using preset rules. |
8 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
9 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
10 | Run Grid Search | select | no | Runs grid search to find the best hyperparameters |
11 | Use Target Dependency | select | no | Useful for time-history predictions |
12 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
13 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
14 | Grid Search Scoring Type | select | r2 | How to measure error |
15 | Cross-Validation Scoring Type | select | r2 | How to measure error |
16 | Verification Dataset | dataset | The trained model will be tested using this dataset | |
17 | Hold Back Ratio | scalar | 0 | When this ratio is non-zero, the model will be trained on the dataset and tested on the verification dataset |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_IMAGE_CLASSIFICATION_LEARN¶
Description: Connects to a d3VIEW Image Classification Server to learn based on annotations generated from Image Annotator
Syntax:
ml_image_classification_learn(base_url,dataset,config)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Base URL | text | Url of the server running d3VIEW Image classification | |
2 | LDWA | dataset | This would be a set of manually annotated images generated by the image annotation utility worker in Workflows <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#datasetinput’> <i class=’fa fa-external-link’> </i> View more </a> | |
3 | Configuration Options | keyvalue | Configuration Options <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#keyvalueinput’> <i class=’fa fa-external-link’> </i> View more </a> |
ID | Name | Type | Remarks |
---|---|---|---|
1 | UID | text | |
2 | Model Path | textarea | |
3 | Base Url | text | |
4 | Status Url | text | |
5 | Logs | dataset |
*ML_SIMLYTIKS_TERMINAL¶
Description: Learns and predicts the commands for Simlytiks based on data
Syntax:
ml_simlytiks_terminal(server_url,dataset,schema,visualizations,type,uid,query)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Server URL | text | Url of the server running d3VIEW Terminal Server | |
2 | Dataset | dataset | Input Dataset <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#datasetinput’> <i class=’fa fa-external-link’> </i> View more </a> | |
3 | Schema | dataset | Schema of the dataset that contains the column information <a class=’btn btn-xs btn-default’ target=’_blank’ href=’https://www.d3view.com/docs/master/workflows/Glossary.html#datasetinput’> <i class=’fa fa-external-link’> </i> View more </a> | |
4 | Visualizations | json | JSON file that contains the visualization information | |
5 | Learn Or Predict | select | Learn or Predict for the terminal | |
6 | UID | text | Unique Identifier to use while predicting | |
7 | Predict Query | textarea | Text to predict Simlytiks command |
ID | Name | Type | Remarks |
---|---|---|---|
1 | UID | text | |
2 | Prediction | json |
*ML_LEARN_MEANSHIFT¶
Description: Mean Shift Clustering
Syntax:
ml_learn_meanshift(dataset,independents,nc,normalize,autoclean,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Number of Clusters | text | 3 | Total number of clusters to group the data into. If set to auto, an optimum cluster size will be found based on distance optimization |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_AFFINITYPROPAGATION¶
Description: Affinity Propagation
Syntax:
ml_learn_affinitypropagation(dataset,independents,nc,normalize,autoclean,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Number of Clusters | text | 3 | Total number of clusters to group the data into. If set to auto, an optimum cluster size will be found based on distance optimization |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_EXPLORE_RUN_PCA¶
Description: RunPCA
Syntax:
ml_explore_run_pca(dataset,independents,normalize)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Normalize | select | none | Normalizes each numerical column. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy-ML JSON output | json |
*ML_EXPLORE_GET_SCHEMA¶
Description: Get Schema
Syntax:
ml_explore_get_schema(dataset,independents,autoclean)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Auto Clean | select | Clean a dataset using preset rules. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy-ML JSON output | json |
*ML_LEARN_AGGLOMERATIVECLUSTERING¶
Description: Agglomerative Clustering
Syntax:
ml_learn_agglomerativeclustering(dataset,independents,nc,normalize,autoclean,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Number of Clusters | text | 3 | Total number of clusters to group the data into. If set to auto, an optimum cluster size will be found based on distance optimization |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_SPECTRALCLUSTERING¶
Description: Spectral clustering
Syntax:
ml_learn_spectralclustering(dataset,independents,nc,normalize,autoclean,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Number of Clusters | text | 3 | Total number of clusters to group the data into. If set to auto, an optimum cluster size will be found based on distance optimization |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_LINEAR¶
Description: Linear Regression
Syntax:
ml_learn_linear(dataset,independents,clabel,degree,normalize,grid_response,autoclean,cv,train_ratio,run_grid_search,dependent_targets,num_dig,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Degree | select | none | Order of fit. |
5 | Normalize | select | none | Normalizes each numerical column. |
6 | Generate Regression Line/Surface | select | yes | Used to visualize a regression line or surface. |
7 | Auto Clean | select | no | Clean a dataset using preset rules. |
8 | Selection of Validation | select | leave_one_out | Ability to valide the model using different methods. The default is test_train_split |
9 | Train ratio | text | 0.9 | Percentage of data to be used for training. Remaining will be used for testing |
10 | Run Grid Search | select | no | Runs grid search to find the best hyperparameters |
11 | Use Target Dependency | select | no | Useful for time-history predictions |
12 | Curve Digitize Points | select | none | Number of digitized points to use when the Input or the Target column is a curve |
13 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_BIRCHCLUSTERING¶
Description: Birch clustering
Syntax:
ml_learn_birchclustering(dataset,independents,nc,normalize,autoclean,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Number of Clusters | text | 3 | Total number of clusters to group the data into. If set to auto, an optimum cluster size will be found based on distance optimization |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_LEARN_DBSCANCLUSTERING¶
Description: DBSCAN clustering
Syntax:
ml_learn_dbscanclustering(dataset,independents,nc,normalize,autoclean,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Number of Clusters | text | 3 | Total number of clusters to group the data into. If set to auto, an optimum cluster size will be found based on distance optimization |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |
*ML_EXPLORE_FEATURE_IMPORTANCE¶
Description: Feature Importance
Syntax:
ml_explore_feature_importance(dataset,independents,clabel,normalize,autoclean)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Target Column | select | The name of the target column. | |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | Clean a dataset using preset rules. |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy-ML JSON output | json |
*ML_LEARN_KMEANS¶
Description: K-Means
Syntax:
ml_learn_kmeans(dataset,independents,nc,normalize,autoclean,skip_trainingdata_in_model)
ID | Name | Type | Default | Remarks |
---|---|---|---|---|
1 | Dataset | dataset | ||
2 | Input Features | select | A subset of columns that will be used to train the model. | |
3 | Number of Clusters | text | 3 | Total number of clusters to group the data into. If set to auto, an optimum cluster size will be found based on distance optimization |
4 | Normalize | select | none | Normalizes each numerical column. |
5 | Auto Clean | select | no | Clean a dataset using preset rules. |
6 | Skip including training data in model | select | no | While saving the model, we skip including the training data |
ID | Name | Type | Remarks |
---|---|---|---|
1 | Lucy ML JSON Output | json | |
2 | Responses from Learn | dataset | |
3 | Visualizations from Learn | dataset | |
4 | Score | number | |
5 | Model Path | textarea |